МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИАТЭ НИЯУ МИФИ)

ОТДЕЛЕНИЕ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

Одобрено на заседании Ученого совета ИАТЭ НИЯУ МИФИ Протокол от 24.04.2023 № 23.4

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Теоретическая механика / Theoretical Mechanics

Название дисциплины

для студентов направление подготовки

14.03.01 "Ядерная энергетика и теплофизика"

Название специальности

образовательная программа Nuclear technologies

Название специализации

Форма обучения: очная

г. Обнинск 2023 г.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения ООП бакалавриат обучающийся должен овладеть следующими результатами обучения по дисциплине:

Коды	Результаты освоения	Перечень планируемых
компетенций	ООП	результатов обучения по
	Содержание	дисциплине
	компетенций	
ОК-1	Способность к	знать: законы классической
	абстрактному	механики и ее
	мышлению, анализу,	математический аппарат;
	синтезу	уметь: владеть лагранжевым
		и гамильтоновым
		формализмом теоретической
		физики, методами описания
		классических систем в
		механике;
		владеть:навыками описания
		характеристик механических
		систем с помощью
		математического аппарата
		классической

2. Место дисциплины в структуре ООП бакалавриат

Дисциплина реализуется в рамках базовойчасти.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин: общая физика, математический анализ

Дисциплина изучается на3 курсе в 6 семестре.

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 зачетных единиц (з.е.), 108 академических часов.

3.1. Объём дисциплины по видам учебных занятий (в часах)

Заполнять в соответствии с методическими рекомендациями по учету контактных

видов работы

Объем дисциплины	Форма о	бучения
	Очная форма	Заочная форма
	обучения	обучения
	Семестр	Курс
	No	<u>N</u> o
		ов на вид работы
Контактная* работа обучающихся с		
преподавателем		
(по видам учебных занятий) (всего)		
Аудиторная работа (всего):	51	
в том числе:		
лекции	34	
семинары, практические занятия	17	
лабораторные работы	0	
Промежуточная аттестация		
В том числе:		
Зачет	-	
Экзамен	36	
Самостоятельная работа обучающихся (всего)	21	
В том числе:		
проработка учебного (теоретического)		
материала	15	
выполнение индивидуальных заданий		
(подготовка сообщений, презентаций)	20	
подготовка ко всем видам контрольных		
испытаний текущего контроля	20	
успеваемости (в течение семестра)	_ •	
подготовка ко всем видам контрольных		
испытаний промежуточной аттестации	36	
(по окончании семестра)		
Всего (часы):	108	
Всего(зачетные единицы):	3	

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

Для очной формы обучения

	/ 1						
№	Наименование раздела /темы	мы Виды учебной работы в ч			ты в часа	acax	
п/п	дисциплины	Очная форма обучения					
		Лек	Сем/Пр	Лаб	Внеауд	CPO	
1	Тема. Уравнение движения. Законы сохранения.	8	5			7	
2	Тема.Интегрирование уравнений движения Столкновения частиц.	10	7			7	
3	Тема. Канонические уравнения.Малые колебания	8	5			7	
	Всего:	34	17			21	

Прим.: Лек — лекции, Сем/Пр — семинары, практические занятия, Лаб — лабораторные занятия, СРО — самостоятельная работа обучающихся, Внеауд — внеаудиторная работа.

4.2. Содержание дисциплины, структурированное по разделам (темам)

Лекционный курс

	Наименование	Содержание
No	раздела /темы	Содержиние
245	_	
	дисциплины	
1	Тема 1. Уравнение движения	Основная задача динамики несвободной системы и понятие о связях. Действительные, возможные и виртуальные перемещения. Идеальные связи. Уравнение Лагранжа с реакциямисвязей (уравнение Лагранжа 1-го рода). Общее уравнение динамики уравнение Даламбера-Лагранжа. Обобщенные координаты. Уравнение Лагранжа в независимых координатах (уравнение Лагранжа 2-го
		рода). Принцип виртуальных перемещений. Принцип наименьшего действия(принцип Гамильтона).
2	Тема 2. Законы сохранения	Энергия. Импульс. Центр инерции. Момент импульса. Обобщенные импульсы. Циклические координаты.
3	Тема 3. Интегрирование уравнений движения	Одномерное движение. Приведённая масса. Движение в центральном поле. Кеплерова задача
4	Тема 4.	Распад частиц. Упругие столкновения частиц. Рассеяние частиц. Формула Резерфорда. Рассеяние под малым углом.

	Столкновение			
	частиц			
5	Тема 5.	Преобразование Лежандра. Уравнения Гамильтона Функция		
	Канонические	Раусса. Скобки Пуассона. Действие как функция координат. Принцип Мопертюи. Канонические преобразования. Теорема		
	уравнения	Лиувилля. Уравнение Гамильтона-Якоби. Метод разделения переменных. Переменные "действие - угол". Адиабатические инварианты.		
6	Тема 6. Малые колебания	Свободные одномерные колебания. Вынужденные колебания. Колебание систем со многими степенями свободы.		

Практические/семинарские занятия

тические/семинирские	
Наименование	Содержание
раздела /темы	
дисциплины	
Тема 1. Уравнение	Уравнение Лагранжа с реакциями
движения	связей. Функция Лагранжа. Уравнение Лагранжа в независимых
	координатах.
Тема 2. Законы	Уравнение движения. Законы сохра-
сохранения	нения.
Тема 3.	Движение в центральном поле. Кеплерова задача
Интегрирование	
уравнений движения	
Тема 4.	Распад частиц. Упругие столкновения частиц.
Столкновение	
частиц	
Тема 5.	Уравнение Гамильтона-Якоби. Метод разделения
Канонические	переменных. Переменные "действие - угол". Адиабатические
уравнения	инварианты.
Тема 6. Малые	Вынужденные колебания. Колебание систем со многими
колебания	степенями свободы.
	Наименование раздела / темы дисциплины Тема 1. Уравнение движения Тема 2. Законы сохранения Тема 3. Интегрирование уравнений движения Тема 4. Столкновение частиц Тема 5. Канонические уравнения Тема 6. Малые

Лабораторные занятия

Не предусмотрены

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

См. разделы «Основная и дополнительная учебная литература»

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

6.1. Паспорт фонда оценочных средств по дисциплине

Nº	Контролируемые разделы	Код контролируемой	Наименование
п/п	(темы) дисциплины	компетенции (или её	оценочного средства
	(результаты по разделам)	части) / и ее	
		формулировка	
1	Тема 1. Уравнение движения	Способность к	Контрольная работа №1
		абстрактному мышлению,	
		анализу, синтезу (ОК-1)	
2	Тема 2. Законы сохранения	Способность к	
		абстрактному мышлению,	
		анализу, синтезу(ОК-1)	
3	Тема 3. Интегрирование	Способность к	
	уравнений движения	абстрактному мышлению,	
		анализу, синтезу(ОК-1)	
4	Тема 4. Столкновение частиц	Способность к	Контрольная работа №2
		абстрактному мышлению,	
		анализу, синтезу(ОК-1)	
5	Тема 5. Канонические	Способность к	
	уравнения	абстрактному мышлению,	
		анализу, синтезу(ОК-1)	
6	Тема 6. Малые колебания	Способность к	
		абстрактному мышлению,	
		анализу, синтезу(ОК-1)	
	Экзамен	Способность к	Экзаменационный билет
		абстрактному мышлению,	
		анализу, синтезу(ОК-1)	
	Всего: контрольная рабоат№1,2,	экзамен	

6.2. Типовые контрольные задания или иные материалы

6.2.1. Экзамен или зачет

- а) типовые вопросы (задания):
- 1. Общее уравнение динамики. Принцип Даламбера-Лагранжа.
- 2. Первые интегралы канонических уравнений. Теорема Пуассона.
- 3 Свойства функции Лагранжа. Уравнение Лагранжа 2-го рода.
- 4 Свойства пространства и законы сохранения.
- 5. Интегрирование уравнений движения методом Гамильтона-Якоби.
- 6. Принцип виртуальных перемещений.
- 7. Уравнение Лагранжа 2-го рода. Первые интегралы.
- 8. Определение и уравнение обобщенных сил.
- 9. Уравнения Гамильтона-Якоби. Полный интеграл уравнения.
- 10. Определение и уравнение идеальных связей.
- 11. Переменные Гамильтона. Канонические уравнения Гамильтона.

- 12. Обобщенные координаты и обобщенные силы.
- 12. Фазовое пространство. Интегральные инварианты.
- 13. Действительные и виртуальные перемещения.
- 14. Адиабатические инварианты. Переменные действие-угол.
- 15. Уравнение связей. Голономные системы.
- 16. Принцип наименьшего действия Гамильтона.
- 17. Принцип Даламбера. Общее уравнение динамики.
- 18. Скобки Пуассона и их свойства.
- 19. Принцип наименьшего действия Мопертюи-Лагранжа.
- 20. Канонические преобразования уравнений Гамильтона.
- 21. Фазовое и координатное пространства. Теорема Лиувилля. Преобразования Лежандра уравнений Лагранжа.
- 22. Физический смысл функций Лагранжа и Гамильтона.
- 23. Циклические переменные в уравнениях движения.
- 24. Интегральный инвариант Пуанкаре и Пуанкаре-Картана.
- 25. Принцип наименьшего действия в форме Якоби.
- 26. Кинетическая энергия и функция Лагранжа в обобщенных координатах.
- б) критерии оценивания компетенций (результатов): Отлично/хорошо/удовлетворительно/неудовлетворительно

в) описание шкалы оценивания:

Допуск к экзамену по дисциплине осуществляется при количестве набранных в течение семестра баллов равно и/или более 35 и всех выполненных заданиях. За семестр студент может набрать от 35 до 60 баллов.

Оценка	Критерии оценки
Отлично	Студент должен:
36-40	- продемонстрировать глубокое и прочное усвоение
	знаний программного материала;
	- исчерпывающе, последовательно, грамотно и логически
	стройно изложить теоретический материал;
	- правильно формулировать определения;
	- продемонстрировать умения самостоятельной работы с
	литературой;
	- уметь сделать выводы по излагаемому материалу.
Хорошо	Студент должен:
30-35	- продемонстрировать достаточно полное знание
	программного материала;
	- продемонстрировать знание основных теоретических
	понятий;
	достаточно последовательно, грамотно и логически
	стройно излагать материал;
	- продемонстрировать умение ориентироваться в
	литературе;

	- уметь сделать достаточно обоснованные выводы по
	излагаемому материалу.
Удовлетворительно	Студент должен:
25-29	- продемонстрировать общее знание изучаемого
	материала;
	- показать общее владение понятийным аппаратом
	дисциплины;
	- уметь строить ответ в соответствии со структурой
	излагаемого вопроса;
	- знать основную рекомендуемую программой учебную
	литературу.
Неудовлетворительно	Студент демонстрирует:
24 и меньше	- незнание значительной части программного материала;
	- не владение понятийным аппаратом дисциплины;
	- существенные ошибки при изложении учебного
	материала;
	- неумение строить ответ в соответствии со структурой
	излагаемого вопроса;
	- неумение делать выводы по излагаемому материалу.

6.2.2. Контрольная работа №1

а) типовые задания (вопросы) - образец:

1.

Кинетическая и потенциальная энергии сферического маятника определяются равенствами

$$T = \frac{1}{2} ml^2 (\dot{\theta}^2 + \dot{\psi}^2 \sin^2 \theta),$$

$$\Pi = mgl (1 - \cos \theta).$$

- б) Критерии оценивания компетенций (результатов):
- уровень освоения обучающимся материала, предусмотренного учебной программой;
- умение обучающегося использовать теоретические знания при выполнении заданий и задач;
- обоснованность, четкость, краткость изложения ответа.
 - в) Описание шкалы оценивания:

25-30 баллов ставится, если:

- изученный материал изложен полно, определения даны верно;
- ответ показывает понимание материала;
- обучающийся может обосновать свои суждения, применить знания на практике, привести необходимые примеры, не только по учебнику и конспекту, но и

самостоятельно составленные.

18-24 баллов ставится, если:

- изученный материал изложен достаточно полно;
- при ответе допускаются ошибки, заминки, которые обучающийся в состоянии исправить самостоятельно при наводящих вопросах;
- обучающийся затрудняется с ответами на 1-2 дополнительных вопроса.

15-17 баллов ставится, если:

- материал изложен неполно, с неточностями в определении понятий или формулировке определений;
- материал излагается непоследовательно;
- –обучающийся не может достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- на 50% дополнительных вопросов даны неверные ответы.

0-14 баллов ставится, если:

- при ответе обнаруживается полное незнание и непонимание изучаемого материала;
- материал излагается неуверенно, беспорядочно;
- даны неверные ответы более чем на 50% дополнительных вопросов.

6.2.3. Контрольная работа №2

а) типовые задания (вопросы) - образец:

Шарик массы m находится внутри прямолинейной горизонтальной трубки AB, которая равномерно вращается с угловой скоростью ω вокруг вертикальной оси, проходящей через точку A. Шарик соединен с неподвижной точкой A пружиной жесткости c. За обобщенную координату принимаем расстояние x шарика от точки A. Если пренебречь массой пружины, кинетическая энергия шарика будет равна

$$T = \frac{1}{2} m \left(\dot{x}^2 + \dot{x}^2 \omega^2 \right).$$

Если x_0 длина пружины в ненапряженном состоянии, то потенциальная энергия $\Pi = \frac{c}{2} (x - x_0)^2$

- б) Критерии оценивания компетенций (результатов):
- уровень освоения обучающимся материала, предусмотренного учебной программой;
- умение обучающегося использовать теоретические знания при выполнении заданий и задач;
- обоснованность, четкость, краткость изложения ответа.
 - в) Описание шкалы оценивания:

25-30 баллов ставится, если:

- изученный материал изложен полно, определения даны верно;
- ответ показывает понимание материала;

 обучающийся может обосновать свои суждения, применить знания на практике, привести необходимые примеры, не только по учебнику и конспекту, но и самостоятельно составленные.

18-24 баллов ставится, если:

- изученный материал изложен достаточно полно;
- при ответе допускаются ошибки, заминки, которые обучающийся в состоянии исправить самостоятельно при наводящих вопросах;
- обучающийся затрудняется с ответами на 1-2 дополнительных вопроса.

15-17 баллов ставится, если:

- материал изложен неполно, с неточностями в определении понятий или формулировке определений;
- материал излагается непоследовательно;
- –обучающийся не может достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- на 50% дополнительных вопросов даны неверные ответы.

0-14 баллов ставится, если:

- при ответе обнаруживается полное незнание и непонимание изучаемого материала;
- материал излагается неуверенно, беспорядочно;
- даны неверные ответы более чем на 50% дополнительных вопросов.

6.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Рейтинговая оценка знаний является интегральным показателем качества теоретических и практических знаний и навыков студентов по дисциплине и складывается из оценок, полученных в ходе текущего контроля и промежуточной аттестации.

Текущий контроль в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы студентов.

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины.

Текущий контроль осуществляется два раза в семестр: контрольная точка № 1 (КТ № 1) и контрольная точка № 2 (КТ № 2).

Результаты текущего контроля и промежуточной аттестации подводятся по шкале балльно-рейтинговой системы.

Вид контроля	Этап рейтинговой системы Оценочное	Балл	
	средство	Минимум	Максимум
Текущий	Контрольная точка № 1	18	30

	Контрольная работа №1	18	30
	Контрольная точка № 2	18	30
	Контрольная работа №2	18	30
Промежуточный	Экзамен	24	40
	Вопрос	5	10
	Вопрос	5	10
	Задача	14	20
ИТОГО по дисциплине		60	100

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная учебная литература:

- 1. Никитин Н. Н. Курс теоретической механики [Электронный ресурс] : учебник. Электрон. дан. СПб. : Лань, 2011. 720 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=1807
- 2. Мещерский, И.В. Задачи по теоретической механике [Электронный ресурс] : учебное пособие. Электрон. дан. СПб. : Лань, 2012. 448 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2786 3.

б) дополнительная учебная литература:

- 1. С.М. Тарг. Краткий курс теоретической механики. М.: Высшая школа, 1998. 416 с. (имеется в библиотеке ИАТЭ).
- 2. А.Зоммерфельд. Механика. Физматлит., 1999 г. (Имеется в электронной библиотеке кафедры).
- 3. Ю.Г. Павленко. Лекции по теоретической механике. Физматлит, 2002 г. (Имеется в электронной библиотеке кафедры)
- 8. Перечень ресурсов* информационно-телекоммуникационной сети «Интернет» (далее сеть «Интернет»), необходимых для освоения дисциплины

http://ibooks.ru/

http://e.lanbook.com/

http://www.biblio-online.ru/

http://kuperbook.biblioclub.ru

http://www.studentlibrary.ru

http://library.mephi.ru

- **9. Методические указания для обучающихся по освоению дисциплины** Изучение данной дисциплины включает лекционный материал и практические занятия (семинары).
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая

перечень программного обеспечения и информационных справочных систем (при необходимости)

При чтении лекций по всем темам активно используется компьютерная техника для демонстрации слайдов с помощью программного приложения MicrosoftPowerPoint.

Информационные технологии:

- сбор, хранение, систематизация и выдача учебной и научной информации;
- обработка текстовой, графической и эмпирической информации;
- подготовка, конструирование и презентация итогов исследовательской и аналитической деятельности;
- самостоятельный поиск дополнительного учебного и научного материала, с использованием поисковых систем и сайтов сети Интернет, электронных энциклопедий и баз данных;
- использование электронной почты преподавателей и обучающихся для рассылки, переписки и обсуждения возникших учебных проблем.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Аудиторный фонд института
- 2. Библиотечный фонд института

12. Иные сведения и (или) материалы

12.1. Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине

Применяемые на лекционных занятиях

- Технология концентрированного обучения (лекция-беседа, привлечение внимания студентов к наиболее важным вопросам темы, содержание и темп изложения учебного материала определяется с учетом особенностей студентов)
- Технология активного обучения (визуальная лекция с разбором конкретных ситуаций)

Применяемые на практических занятиях

- Технология активного обучения (визуальный семинар с разбором конкретных задач).
- Технология интерактивного обучения (мозговой штурм: группа получает задание, далее предполагается высказывать как можно большее количество вариантов решения, затем из общего числа высказанных идей отбираются наиболее удачные, которые могут быть использованы на практике).

12.2. Формы органі выносимые для сал типовые задания для	<i>постоятельного</i>	-	•	
Самостоятельная рабо	1 1	ена		
12.3. Краткий термі Нетребуется	инологический сло	варь		
Программу составил:				
	_ В.Л. Шаблов, про	фессор, д.ф-м.н.		

А.В. Зродников, профессор, д.ф-м.н.

Рецензент: